Abstract

Review Article

COVID-19 pandemic to endemic

Alpana Razdan*, Rajat Arora, Gauri Agarwal, Vandana Sharma, Narendra Singh, Jagdish Kandpal, Sunil Tripathi, Vijay Singh, Saurabh Vishwakarma and Basudev Pal

Published: 07 November, 2022 | Volume 6 - Issue 2 | Pages: 043-049

The COVID-19 pandemic appeared in late 2019 and became a major health concern with rapid transmission and very high mortality rates across the globe. Although precautionary, preventive, protective and therapeutic measures have been adopted against COVID-19, still the disease has drastically affected people. In order to overcome the challenges of the pandemic, the understanding of the route of transmission, its fusion with receptors and invasion into the human body and hacking the immune system, the viral genome was sequenced. The viral genome keeps on mutating and altering its original form into its subtypes. Moreover, age and comorbid conditions had their impact on developing the disease differing from individual to individual due to interaction varying between the host genome and virus. Considering the pathogenesis of the virus, neutralizing antibodies reduced the viral impact and severity. This review is focused on highlighting the COVID-19 genome, host genetic factors, the pathogenesis of the disease and available therapeutic measures to overcome the pandemic.

Read Full Article HTML DOI: 10.29328/journal.ijcv.1001049 Cite this Article Read Full Article PDF

Keywords:

Neutralizing antibodies; Pathogenesis; Comorbid conditions; Immune system; Therapeutic Measures

References

  1. World Health Organization. Emergencies. https://www.who.int/europe/emergencies/situations/covid-19.
  2. The SARS-CoV-2 genome: variation, implication and application. 2020. https://royalsociety.org/-/media/policy/projects/set-c/set-c-genome-analysis.pdf.
  3. Centers for Disease Control and Prevention. https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-classifications.html.
  4. Sah R, Rodriguez-Morales AJ, Jha R, Chu DKW, Gu H, Peiris M, Bastola A, Lal BK, Ojha HC, Rabaan AA, Zambrano LI, Costello A, Morita K, Pandey BD, Poon LLM. Complete Genome Sequence of a 2019 Novel Coronavirus (SARS-CoV-2) Strain Isolated in Nepal. Microbiol Resour Announc. 2020 Mar 12;9(11):e00169-20. doi: 10.1128/MRA.00169-20. PMID: 32165386; PMCID: PMC7067954.
  5. Severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1, complete genome. https://www.ncbi.nlm.nih.gov/nuccore/NC_045512.
  6. SARS-CoV-2 Sequencing Data: The Devil Is in the Genomic Detail. 2020. https://asm.org/Articles/2020/October/SARS-CoV-2-Sequencing-Data-The-Devil-Is-in-the-Gen.
  7. Hemarajata P. SARS-CoV-2 Sequencing Data: The Devil Is in the Genomic Detail. American Society for Microbiology. https://asm.org/Articles/2020/October/SARS-CoV-2-Sequencing-Data-The-Devil-Is-in-the-Gen.
  8. SARS-CoV-2_Sequencing. https://github.com/CDCgov/SARS-CoV-2_Sequencing.
  9. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, Hu Y, Tao ZW, Tian JH, Pei YY, Yuan ML, Zhang YL, Dai FH, Liu Y, Wang QM, Zheng JJ, Xu L, Holmes EC, Zhang YZ. A new coronavirus associated with human respiratory disease in China. Nature. 2020 Mar;579(7798):265-269. doi: 10.1038/s41586-020-2008-3. Epub 2020 Feb 3. Erratum in: Nature. 2020 Apr;580(7803):E7. PMID: 32015508; PMCID: PMC7094943.
  10. Marian AJ. Current state of vaccine development and targeted therapies for COVID-19: impact of basic science discoveries. Cardiovasc Pathol. 2021 Jan-Feb;50:107278. doi: 10.1016/j.carpath.2020.107278. Epub 2020 Sep 2. PMID: 32889088; PMCID: PMC7462898.
  11. Severe Covid-19 GWAS Group, Ellinghaus D, Degenhardt F, Bujanda L, Buti M, et al. Genomewide Association Study of Severe Covid-19 with Respiratory Failure. N Engl J Med. 2020 Oct 15;383(16):1522-1534. doi: 10.1056/NEJMoa2020283. Epub 2020 Jun 17. PMID: 32558485; PMCID: PMC7315890.
  12. Lin M, Tseng HK, Trejaut JA, Lee HL, Loo JH, Chu CC, Chen PJ, Su YW, Lim KH, Tsai ZU, Lin RY, Lin RS, Huang CH. Association of HLA class I with severe acute respiratory syndrome coronavirus infection. BMC Med Genet. 2003 Sep 12;4:9. doi: 10.1186/1471-2350-4-9. PMID: 12969506; PMCID: PMC212558.
  13. Lu C, Gam R, Pandurangan AP, Gough J. Genetic risk factors for death with SARS‐CoV‐2 from the UK Biobank. medRxiv. 2020.
  14. Smatti MK, Al-Sarraj YA, Albagha O, Yassine HM. Host Genetic Variants Potentially Associated With SARS-CoV-2: A Multi-Population Analysis. Front Genet. 2020 Oct 2;11:578523. doi: 10.3389/fgene.2020.578523. PMID: 33133166; PMCID: PMC7567011.
  15. Verma A, Minnier J, Wan ES, Huffman JE, Gao L, et al. Million Veteran Program COVID-19 Science Initiative. A MUC5BGene Polymorphism, rs35705950-T Confers Protective Effects Against COVID-19 Hospitalization but not Severe Disease or Mortality. Am J Respir Crit Care Med. 2022 Jun 30. doi: 10.1164/rccm.202109-2166OC. Epub ahead of print. PMID: 35771531.
  16. Verma S, Abbas M, Verma S, Khan FH, Raza ST, Siddiqi Z, Ahmad I, Mahdi F. Impact of I/D polymorphism of angiotensin-converting enzyme 1 (ACE1) gene on the severity of COVID-19 patients. Infect Genet Evol. 2021 Jul;91:104801. doi: 10.1016/j.meegid.2021.104801. Epub 2021 Mar 4. PMID: 33676010; PMCID: PMC7929788.
  17. Schönfelder K, Breuckmann K, Elsner C, Dittmer U, Fistera D, Herbstreit F, Risse J, Schmidt K, Sutharsan S, Taube C, Jöckel KH, Siffert W, Kribben A, Möhlendick B. Transmembrane serine protease 2Polymorphisms and Susceptibility to Severe Acute Respiratory Syndrome Coronavirus Type 2 Infection: A German Case-Control Study. Front Genet. 2021 Apr 21;12:667231. doi: 10.3389/fgene.2021.667231. PMID: 33968142; PMCID: PMC8097083.
  18. Cheng Y, Cheng G, Chui CH, Lau FY, Chan PK, Ng MH, Sung JJ, Wong RS. ABO blood group and susceptibility to severe acute respiratory syndrome. JAMA. 2005 Mar 23;293(12):1450-1. doi: 10.1001/jama.293.12.1450-c. Erratum in: JAMA. 2005 Aug 17;294(7):794. Cheng, Yufeng [corrected to Cheng, Yunfeng]. PMID: 15784866.
  19. Trégouët DA, Heath S, Saut N, Biron-Andreani C, Schved JF, Pernod G, Galan P, Drouet L, Zelenika D, Juhan-Vague I, Alessi MC, Tiret L, Lathrop M, Emmerich J, Morange PE. Common susceptibility alleles are unlikely to contribute as strongly as the FV and ABO loci to VTE risk: results from a GWAS approach. Blood. 2009 May 21;113(21):5298-303. doi: 10.1182/blood-2008-11-190389. Epub 2009 Mar 10. PMID: 19278955.
  20. Adli A, Rahimi M, Khodaie R, Hashemzaei N, Hosseini SM. Role of genetic variants and host polymorphisms on COVID-19: From viral entrance mechanisms to immunological reactions. J Med Virol. 2022 May;94(5):1846-1865. doi: 10.1002/jmv.27615. Epub 2022 Feb 8. PMID: 35076118; PMCID: PMC9015257.
  21. COVID-19 Host Genetics Initiative. A first update on mapping the human genetic architecture of COVID-19. Nature. 2022 Aug;608(7921):E1-E10. doi: 10.1038/s41586-022-04826-7. Epub 2022 Aug 3. PMID: 35922517; PMCID: PMC9352569.
  22. Feng S, Song F, Guo W, Tan J, Zhang X, Qiao F, Guo J, Zhang L, Jia X. Potential Genes Associated with COVID-19 and Comorbidity. Int J Med Sci. 2022 Jan 24;19(2):402-415. doi: 10.7150/ijms.67815. PMID: 35165525; PMCID: PMC8795808.
  23. Dhochak N, Singhal T, Kabra SK, Lodha R. Pathophysiology of COVID-19: Why Children Fare Better than Adults? Indian J Pediatr. 2020 Jul;87(7):537-546. doi: 10.1007/s12098-020-03322-y. Epub 2020 May 14. PMID: 32410003; PMCID: PMC7221011.
  24. Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J Adv Res. 2020 Mar 16;24:91-98. doi: 10.1016/j.jare.2020.03.005. PMID: 32257431; PMCID: PMC7113610.
  25. Cheng VC, Lau SK, Woo PC, Yuen KY. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin Microbiol Rev. 2007 Oct;20(4):660-94. doi: 10.1128/CMR.00023-07. PMID: 17934078; PMCID: PMC2176051.
  26. Li F. Structure, Function, and Evolution of Coronavirus Spike Proteins. Annu Rev Virol. 2016 Sep 29;3(1):237-261. doi: 10.1146/annurev-virology-110615-042301. Epub 2016 Aug 25. PMID: 27578435; PMCID: PMC5457962.
  27. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020 Feb 15;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5. Epub 2020 Jan 24. Erratum in: Lancet. 2020 Jan 30;: PMID: 31986264; PMCID: PMC7159299.
  28. Campbell F, Archer B, Laurenson-Schafer H, Jinnai Y, Konings F, Batra N, Pavlin B, Vandemaele K, Van Kerkhove MD, Jombart T, Morgan O, le Polain de Waroux O. Increased transmissibility and global spread of SARS-CoV-2 variants of concern as at June 2021. Euro Surveill. 2021 Jun;26(24):2100509. doi: 10.2807/1560-7917.ES.2021.26.24.2100509. PMID: 34142653; PMCID: PMC8212592.
  29. Wink PL, Volpato FCZ, Monteiro FL, Willig JB, Zavascki AP, Barth AL, Martins AF. First identification of SARS-CoV-2 lambda (C.37) variant in Southern Brazil. Infect Control Hosp Epidemiol. 2021 Sep 2:1-2. doi: 10.1017/ice.2021.390. Epub ahead of print. PMID: 34470685; PMCID: PMC8564022.
  30. Kuzmina A, Wattad S, Khalaila Y, Ottolenghi A, Rosental B, Engel S, Rosenberg E, Taube R. SARS CoV-2 Delta variant exhibits enhanced infectivity and a minor decrease in neutralization sensitivity to convalescent or post-vaccination sera. iScience. 2021 Dec 17;24(12):103467. doi: 10.1016/j.isci.2021.103467. Epub 2021 Nov 15. PMID: 34805783; PMCID: PMC8591850.
  31. Saito A, Irie T, Suzuki R, Maemura T, Nasser H, Uriu K, Kosugi Y, Shirakawa K, Sadamasu K, Kimura I, Ito J, Wu J, Iwatsuki-Horimoto K, Ito M, Yamayoshi S, Loeber S, Tsuda M, Wang L, Ozono S, Butlertanaka EP, Tanaka YL, Shimizu R, Shimizu K, Yoshimatsu K, Kawabata R, Sakaguchi T, Tokunaga K, Yoshida I, Asakura H, Nagashima M, Kazuma Y, Nomura R, Horisawa Y, Yoshimura K, Takaori-Kondo A, Imai M; Genotype to Phenotype Japan (G2P-Japan) Consortium, Tanaka S, Nakagawa S, Ikeda T, Fukuhara T, Kawaoka Y, Sato K. Enhanced fusogenicity and pathogenicity of SARS-CoV-2 Delta P681R mutation. Nature. 2022 Feb;602(7896):300-306. doi: 10.1038/s41586-021-04266-9. Epub 2021 Nov 25. PMID: 34823256; PMCID: PMC8828475.
  32. Planas D, Veyer D, Baidaliuk A, Staropoli I, Guivel-Benhassine F, Rajah MM, Planchais C, Porrot F, Robillard N, Puech J, Prot M, Gallais F, Gantner P, Velay A, Le Guen J, Kassis-Chikhani N, Edriss D, Belec L, Seve A, Courtellemont L, Péré H, Hocqueloux L, Fafi-Kremer S, Prazuck T, Mouquet H, Bruel T, Simon-Lorière E, Rey FA, Schwartz O. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature. 2021 Aug;596(7871):276-280. doi: 10.1038/s41586-021-03777-9. Epub 2021 Jul 8. PMID: 34237773.
  33. Lab studies, animal studies, and epidemiological data all indicate that Omicron may cause less severe disease than previous variants. Harvard Medical School. 2022. 〈https://www.health.harvard.edu/diseases-and-conditions/coronavirus-resource-cente.
  34. Zahradník J, Marciano S, Shemesh M, Zoler E, Harari D, Chiaravalli J, Meyer B, Rudich Y, Li C, Marton I, Dym O, Elad N, Lewis MG, Andersen H, Gagne M, Seder RA, Douek DC, Schreiber G. SARS-CoV-2 variant prediction and antiviral drug design are enabled by RBD in vitro evolution. Nat Microbiol. 2021 Sep;6(9):1188-1198. doi: 10.1038/s41564-021-00954-4. Epub 2021 Aug 16. PMID: 34400835.
  35. Nabel KG, Clark SA, Shankar S, Pan J, Clark LE, Yang P, Coscia A, McKay LGA, Varnum HH, Brusic V, Tolan NV, Zhou G, Desjardins M, Turbett SE, Kanjilal S, Sherman AC, Dighe A, LaRocque RC, Ryan ET, Tylek C, Cohen-Solal JF, Darcy AT, Tavella D, Clabbers A, Fan Y, Griffiths A, Correia IR, Seagal J, Baden LR, Charles RC, Abraham J. Structural basis for continued antibody evasion by the SARS-CoV-2 receptor binding domain. Science. 2022 Jan 21;375(6578):eabl6251. doi: 10.1126/science.abl6251. Epub 2022 Jan 21. PMID: 34855508; PMCID: PMC9127715.
  36. Lacobucci G. Long covid: Damage to multiple organs presents in young, low-risk patients. BMJ 2020; 371:m4470 | doi: 10.1136/bmj.m4470 1.
  37. Dennis A, Wamil M, Kapur S, Alberts J, Badley AD. Multi-organ impairment in low-risk individuals with long COVID. https://www.medrxiv.org/content/10.1101/2020.10.14.20212555v1.full.pdf.
  38. COVID-19 rapid guideline: managing the long-term effects of COVID-19. London: National Institute for Health and Care Excellence (NICE); 2020 Dec 18. PMID: 33555768.
  39. LIVING WITH COVID19. London National Institute for Health Research. 2021.
  40. Islam KU, Iqbal J. An Update on Molecular Diagnostics for COVID-19. Front Cell Infect Microbiol. 2020 Nov 10;10:560616. doi: 10.3389/fcimb.2020.560616. PMID: 33244462; PMCID: PMC7683783.
  41. Chen L, Xiong J, Bao L, Shi Y. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect Dis. 2020 Apr;20(4):398-400. doi: 10.1016/S1473-3099(20)30141-9. Epub 2020 Feb 27. PMID: 32113510; PMCID: PMC7128218.
  42. Klassen SA, Senefeld JW, Johnson PW, Carter RE, Wiggins CC, Shoham S, Grossman BJ, Henderson JP, Musser J, Salazar E, Hartman WR, Bouvier NM, Liu STH, Pirofski LA, Baker SE, van Helmond N, Wright RS, Fairweather D, Bruno KA, Wang Z, Paneth NS, Casadevall A, Joyner MJ. The Effect of Convalescent Plasma Therapy on Mortality Among Patients With COVID-19: Systematic Review and Meta-analysis. Mayo Clin Proc. 2021 May;96(5):1262-1275. doi: 10.1016/j.mayocp.2021.02.008. Epub 2021 Feb 17. PMID: 33958057; PMCID: PMC7888247.
  43. Dong Y, Dai T, Wei Y, Zhang L, Zheng M, Zhou F. A systematic review of SARS-CoV-2 vaccine candidates. Signal Transduct Target Ther. 2020 Oct 13;5(1):237. doi: 10.1038/s41392-020-00352-y. PMID: 33051445; PMCID: PMC7551521.
  44. Shin MD, Shukla S, Chung YH, Beiss V, Chan SK, Ortega-Rivera OA, Wirth DM, Chen A, Sack M, Pokorski JK, Steinmetz NF. COVID-19 vaccine development and a potential nanomaterial path forward. Nat Nanotechnol. 2020 Aug;15(8):646-655. doi: 10.1038/s41565-020-0737-y. Epub 2020 Jul 15. PMID: 32669664.
  45. Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, Diemert D, Spector SA, Rouphael N, Creech CB, McGettigan J, Khetan S, Segall N, Solis J, Brosz A, Fierro C, Schwartz H, Neuzil K, Corey L, Gilbert P, Janes H, Follmann D, Marovich M, Mascola J, Polakowski L, Ledgerwood J, Graham BS, Bennett H, Pajon R, Knightly C, Leav B, Deng W, Zhou H, Han S, Ivarsson M, Miller J, Zaks T; COVE Study Group. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2021 Feb 4;384(5):403-416. doi: 10.1056/NEJMoa2035389. Epub 2020 Dec 30. PMID: 33378609; PMCID: PMC7787219.
  46. Zhang Q, Xiang R, Huo S, Zhou Y, Jiang S, Wang Q, Yu F. Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Signal Transduct Target Ther. 2021 Jun 11;6(1):233. doi: 10.1038/s41392-021-00653-w. PMID: 34117216; PMCID: PMC8193598.
  47. Sempowski GD, Saunders KO, Acharya P, Wiehe KJ, Haynes BF. Pandemic Preparedness: Developing Vaccines and Therapeutic Antibodies For COVID-19. Cell. 2020 Jun 25;181(7):1458-1463. doi: 10.1016/j.cell.2020.05.041. Epub 2020 May 27. PMID: 32492407; PMCID: PMC7250787.
  48. Sharma O, Sultan AA, Ding H, Triggle CR. A Review of the Progress and Challenges of Developing a Vaccine for COVID-19. Front Immunol. 2020 Oct 14;11:585354. doi: 10.3389/fimmu.2020.585354. PMID: 33163000; PMCID: PMC7591699.
  49. Draft landscape of COVID-19 candidate vaccines. https://www.who.int/ publications/m/item/draft-landscape-of-covid-19-candidate-vaccines (World Health Organization, 2020).
  50. Zhang Z, Shen Q, Chang H. Vaccines for COVID-19: A Systematic Review of Immunogenicity, Current Development, and Future Prospects. Front Immunol. 2022 Apr 27;13:843928. doi: 10.3389/fimmu.2022.843928. PMID: 35572592; PMCID: PMC9092649.
  51. Phylogenetic Assignment of Named Global Outbreak Lineages. https://cov-lineages.org/resources/pangolin.html.
  52. COVID-19 advice for the public: Getting vaccinated. 2019. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/covid-19-vaccines/advice.
  53. World Health Organization. who.int
  54. Centers for Disease Control and Prevention. https://www.cdc.gov
  55. COVID-19 Bivalent Vaccine Boosters. https://www.fda.gov
  56. Livingston EH, Malani PN, Creech CB. The Johnson & Johnson Vaccine for COVID-19. JAMA. 2021 Apr 20;325(15):1575. doi: 10.1001/jama.2021.2927. PMID: 33646285.
  57. Coronavirus (COVID-19) Vaccinations. ourworldindata.org/covid-vaccinations.
  58. Alexandridi M, Mazej J, Palermo E, Hiscott J. The Coronavirus pandemic - 2022: Viruses, variants & vaccines. Cytokine Growth Factor Rev. 2022 Feb;63:1-9. doi: 10.1016/j.cytogfr.2022.02.002. Epub 2022 Feb 12. PMID: 35216872; PMCID: PMC8839804.
  59. WHO policy brief: Maintaining infection prevention and control measures for COVID-19 in health care facilities. 2022. https://www.who.int/publications/i/item/WHO-2019-nCoV-Policy_Brief-IPC-2022.1

Figures:

Figure 1

Figure 1

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?