Abstract

Mini Review

About Efficiency of High-order Harmonic Generation in Attosecond Physics

Ang-Yang Yu*

Published: 29 October, 2024 | Volume 8 - Issue 2 | Pages: 045-047

For the first time, the interaction between Hydrogen atom and Free-Electron Lasers (FEL) is simulated. The conversion efficiency of High-order Harmonic Generation (HHG) can be enhanced by utilizing a two-color free electron laser with frequency multiplication. It is found that the conversion efficiency of HHG is improved to the largest extent when fourth-fold frequency multiplication is introduced into two-color FEL. The microscopic mechanism of improving the efficiency of HHG is analyzed and discussed.

Read Full Article HTML DOI: 10.29328/journal.ijcv.1001061 Cite this Article Read Full Article PDF

Keywords:

Free-electron lasers; High-order harmonic generation; Ionization probability; Wavepacket; Attosecond

References

    1. Corkum PB, Krausz F. Attosecond science. Nat Phys. 2007;3:381-387. https://ui.adsabs.harvard.edu/abs/2007NatPh...3..381C/abstract
    2. Krausz F, Ivanov M. Attosecond physics. Rev Mod Phys. 2009;81:163-234. https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.81.163
    3. Calegari F, Ayuso D, Trabattoni A, Belshaw L, De Camillis S, Anumula S, et al. A few-cycle laser pulse at 400 nm driving high-harmonic generation. Science. 2014;346:336-339. https://doi.org/10.1126/science.1254061
    4. Krause JL, Kenneth J. Schafer, Kenneth C. Calculation of photoemission from atoms subject to intense laser fields. Phys Rev A. 1992;45:4998. https://journals.aps.org/pra/abstract/10.1103/PhysRevA.45.4998
    5. Schafer KJ, Yang B, DiMauro LF, Kulander KC. Above-threshold ionization beyond the high-frequency approximation. Phys Rev Lett. 1993;70:1599. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.70.1599
    6. Paul PM, Toma ES, Breger P, Mullot G, Auge F, Balcou P, et al. Observation of a train of attosecond pulses from high harmonic generation. Science. 2001;292:1689. https://doi.org/10.1126/science.1059413
    7. Dattoli G, Doria A, Sabia E, Artioli M. Charged Beam Dynamics, Particle Accelerators and Free-electron Lasers. Bristol: IOP Publishing Ltd; 2017. Online ISBN: 978-0-7503-1239-4; Print ISBN: 978-0-7503-1240-0. https://searchworks.stanford.edu/view/12286375
    8. Li C, Wei S, Xuewei D, Du L, Wang Q, Zhang W, et al. Chaoyang Li,et al. Nuclear Instruments and Methods in Physics Research A 2015, 783: 65–67. Nucl Instrum Methods Phys Res A. 2015;783:65-67. https://www.sciencedirect.com/science/article/abs/pii/S016890021500131X
    9. Wang G, Zhang W, Wu G, Dai D, Yang X, Feng C, et al. Longitudinal phase space manipulation for ultra-relativistic electron beams. Phys Rev ST Accel Beams. 2015;18:060701. https://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.18.060701
    10. Mirian NS, Fraia MD, Spampinati S, Sottocorona  F, Allaria E, Badano L, et al. Generation and measurement of intense few-femtosecond superradiant extreme-ultraviolet free-electron laser pulses. Nat Photonics. 2021;15:523-529. https://www.nature.com/articles/s41566-021-00815-w
    11. Ding T, Rebholz M, Aufleger L, Hartmann M, Stooß V, Magunia A, et al. Measuring the frequency chirp of extreme-ultraviolet free-electron laser pulses by transient absorption spectroscopy. Nat Commun. 2021;12:643. https://www.nature.com/articles/s41467-020-20846-1
    12. Jiang S, Su M, Yang S, Wang C, Huang QR, Li G, et al. Vibrational Signature of Dynamic Coupling of a Strong Hydrogen Bond. J Phys Chem Lett. 2021;12(9):2259-2265. https://pubmed.ncbi.nlm.nih.gov/33636082/
    13. Fang L, Osipov T, Murphy B, Tarantelli F, Kukk E, Cryan JP, et al. Multiphoton ionization as a clock to reveal molecular dynamics with intense short x-ray free electron laser pulses. Phys Rev Lett. 2012;109(26):263001. https://pubmed.ncbi.nlm.nih.gov/23368555/
    14. Yase S, Nagaya K, Mizoguchi Y, Yao M, Crossover in the photoionization processes of neon clusters with increasing EUV free-electron-laser intensity. Phys Rev A. 2013;88:043203. https://journals.aps.org/pra/abstract/10.1103/PhysRevA.88.043203
    15. Luppi E, Head-Gordon M. Computation of high-harmonic generation spectra of H2 and N2 in intense laser pulses using quantum chemistry methods and time-dependent density functional theory. Mol Phys. 2012;110:909-923. https://doi.org/10.1080/00268976.2012.675448
    16. Sathyamurthy N, Mahapatra S. Time-dependent quantum mechanical wave packet dynamics. Phys Chem Chem Phys. 2021;23(13):7586-614. https://pubs.rsc.org/en/content/articlehtml/2021/cp/d0cp03929b
    17. Neuhauser D, Baer M; Kouri DJ. The application of optical potentials for reactive scattering: A case study. J Chem Phys. 1990;93:2499. https://pubs.aip.org/aip/jcp/article-abstract/93/4/2499/672909/The-application-of-optical-potentials-for-reactive
    18. Brizuela F, Heyl CM, Rudawski P, Kroon D, Rading L, Dahlström JM, et al. Efficient high-order harmonic generation boosted by below-threshold harmonics. Sci Rep. 2013;3:1410. https://www.nature.com/articles/srep01410
    19. Yu A. Excitation and ionization of helium atom induced by intense free-electron laser pulses. Res Rev J Mod Phys. 2023;3(1):11-13. https://www.scieniqpublishers.com/wp-content/uploads/2023/10/Excitation-and-ionization-of-helium-atom-induced-by-intense-free-electron-laser-pulses-2023.pdf
    20. Farag A, Nause A. Automated, Convenient and Compact Auto-correlation Measurement for an Ultra-fast Laser Pulse. Instrum Exp Tech. 2020;63:547-550. https://link.springer.com/article/10.1134/S0020441220040028

Figures:

Figure 1

Figure 1

Figure 1

Figure 2

Figure 1

Figure 3

Figure 1

Figure 4

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?